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Frequency-Domain Nonlinear Circuit
Analysis Using Generalized
Power Series

GEORGE W. RHYNE, STUDENT MEMBER, IEEE, MICHAEL B. STEER, MEMBER, IEEE,
AND BEVAN D. BATES, MEMBER, IEEE

Abstract —This paper presents for the first time details of the gener-
alized power series technique for the analysis of analog nonlinear circuits.
The method uses generalized power series descriptions of the nonlinear
elements and a spectral balance technique to operate entirely in the
frequency domain. It is therefore suited to the analysis of analog nonlinear
circuits with large-signal multifrequency excitation of arbitrary frequency
separation. The analysis of a low-frequency mixer is used here as a vehicle
to illustrate the concepts of large-signal frequency-domain analysis and the
generalized power series analysis technigue.

I. INTRODUCTION

HE TREND TOWARD monolithic integration of

microwave circuits is intensifying interest in com-
puter-aided design. The interest is predominantly in the
analysis and design of microwave nonlinear analog circuits
having sinusoidal excitation. The particular problems pre-
sented by these circuits differ significantly from those of
low-frequency and of digital circuits and require new simu-
lation strategies. Currently, research is proceeding in several
areas, including large-signal multifrequency excitation (in-
cluding mixer and intermodulation analysis), optimization,
noise analysis, and stability analysis.

This paper details a recently developed numerical non-
linear analysis technique that can be used with analog
circuits having large-signal multifrequency excitation.
Modified power series descriptions (having time delays
and complex coefficients) of the nonlinear elements are
used, so we term the method generalized power series
analysis (GPSA). Earlier uses of generalized power series
analysis are described in [1]-[3]. Applications of gener-
alized power series analysis are reported elsewhere for the
simulation of microwave mixers [4], [5] and of IMPATT
oscillators [6]-[8]. More recently, GPSA has been used to
simulate gain compression and intermodulation distortion
in microwave MESFET amplifiers [9]-[11]. In each appli-
cation, the predictions of generalized power series analysis
have been experimentally verified. In this paper, the method
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of generalized power series analysis is elaborated for the
first time. We present the basic equations dealing with
generalized power series and show how they can be incor-
porated into a harmonic-balance-type algorithm, including
the efficient calculation of the Jacobian'matrix. We discuss
the application of the technique to the analysis of a
low-frequency mixer to illustrate the concepts of large-sig-
nal frequency-domain analysis and GPSA.

1I. METHODS OF MULTIFREQUENCY
NONLINEAR ANALYSIS

Nonlinear analysis methods czm be classified as time-
domain, frequency-domain, or hybrid (mixed time- and
frequency-domain) methods depending on how the linear
and nonlinear elements are analyzed. Time-domain meth-
ods generally use numerical integration or, where possible,
calculate the instantaneous value of the output (e.g. cur-
rent) of an element from the instantaneous value of the
input (e.g. voltage) to it. An example of a computer-aided
analysis technique using this approach is the popular com-
puter program SPICE [12]. Microwave circuits often have
elements that are difficult to model in the time domain
and frequently have time constants that differ by orders of
magnitude. Analysis of these circuits using numerical in-
tegration techniques is inefficient since the integration
time step must be smaller than twice the smallest time
constant while the number of iterations required is de-
termined by the largest time constant [15]. Analysis of
circuits having multifrequency excitation is similarly
troublesome, particularly when the frequencies considered
are widely separated. Time-domain methods also suffer
from poor dynamic range, which is a problem whenever
signals having large differences in amplitude are present, a
situation common in mixer and amplifier circuits.

A far more useful technique for analyzing microwave
circuits is the harmonic balance method [16]. This method
analyzes the linear elements in the frequency domain and
the nonlinear elements in the time domain and has suc-
cessfully been applied to microwave circuit analysis by a
number of researchers [17]-[21]. With these analyses, the
conversion between the frequency-domain solution of the
linear embedding network and the time-domain solution of
the nonlinearity is usually accomplished using fast Fourier
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transform techniques. This limits these methods to systems
having only harmonically related signal components. Re-
cently, however, several methods have been described which
allow consideration of more general multifrequency excita-
tion. Ushida and Chua [22] have developed a technique
that uses a “generalized” discrete Fourier transform, which
has been improved by Sorkin er al. [23]. Gilmore and
Rosenbaum [24] achieve multifrequency harmonic-balance
simulation by sampling the time-domain signal below the
Nyquist rate. The actual response is found by shifting the
input spectra, repeating the analysis, and appropriately
combining the resulting output spectra. A more straight-
forward approach has been used by Rizzoli er al. [25],
where a large number of harmonics are considered and a
supercomputer used for computation. While these methods
are frequently classified as frequency-domain techniques,
they are more appropriately called hybrid methods since
much of the analysis is explicitly done in the time domain.

Yet another approach to circuit analysis is to treat both
the linear and the nonlinear elements in the frequency
domain. This has particular advantages when the fre-
quency-domain response of a nonlinear analog circuit is
required. Frequency-domain nonlinear analyses use func-
tional expansions of the input—output characteristic of the
nonlinear element. Generally, the function itself is the
summation of basis functions, and the responses due to
each functional component of the expansion are summed
to yield the total response of the system. Perhaps the most
general method is that of Antonov and Ponkratov [26],
who derived a formula for the output of a system de-
scribed by the functional relation y(t) = F(x(¢)), where
x(t) is a sum of sinusoids, and F(-) is a function which
can be expressed as a possibly infinite sum of orthonormal
functions. Their output formula involved muitiple infinite
summations of integer order Bessel functions. The result of
using Bessel functions is that convergence of the summa-
tions is likely to be slow and to suffer from poor numerical
accuracy.

Two other frequency-domain nonlinear analysis meth-
ods, using power series and Volterra series, can be viewed
as special cases of the system described by Antonov and
Ponkratov. The simplest functional expansion is the repre-
sentation of y(t) as a power series in x(¢). Conventional
power series expansions can only be used with frequency-
independent (i.e., resistive) systems having single valued
input—output characteristics (i.e., without hysteresis) [13],
[14]. Other basis function expansions, such as the expan-
sion of the Shockley diode equation in terms of Bessel
functions [27], [28], have been used but these are generally
restricted to systems with particular idealized input—out-
put characteristics.

In 1930 Volterra introduced functional expansions that
could be used with a large class of nonlinear systems. His
work was developed further by Weiner in the 1950’s for
the expansion of functionals in terms of orthogonal poly-
nomial series. Weiner’s functional expansions, now known
as Volterra nonlinear transfer functions, while having a
form similar to that of a power series, can handle

frequency-dependent systems with single valued input-
output characteristics [29]. Unfortunately, Volterra nonlin-
ear transfer function analyses are, in general, restricted to
weakly nonlinear systems because of the algebraic com-
plexity of determining Volterra nonlinear transfer func-
tions of high order (as required with more strongly nonlin-
ear systems or with large signals). Because of this, systems
are usually described by fixed, typically third-order,
Volterra series, although no indication of the error in-
volved in doing this is available The limitation arises as, in
essence, Volterra series analysis involves an algebraic pro-
cess analogous to recursion of power series. This is an
unwieldy operation and is exceedingly complex for
Volterra series higher than third order. The great impor-
tance of Volterra series analysis is that it can be systemati-
cally used to analyze fairly complex systems with possibly
noncommensurable frequencies of the input components.
These techniques have been used successfully in analyzing
microwave circuits [30], [31]. An approach related to
Volterra series expansion has been recently reported by
Lamnabhi [32]. This method has the advantage of being
more amenable to computer implementation than the
traditional approaches.

Yet another frequency-domain nonlinear analysis was
introduced by Steer and Khan [1}, [4], who used a gener-
alized power series expansion of the input—output char-
acteristics of a nonlinear system. This method is related to
Volterra series analysis [33]; however, the generalized power
series method is not restricted to weakly nonlinear systems,
as is Volterra series analysis. The basic properties of
generalized power series are reviewed in the following
section.

III. BAsic PROPERTIES OF GENERALIZED POWER SERIES

Every nonlinear circuit simulator must have a facility for
calculating the output of a nonlinearity given the input
and a description of the nonlinear element. The method of
calculation selected determines the types of problems that
can be efficiently solved. If a transient response is re-
quired, for example, then a time-domain simulation is
indicated. If instead, the circuit is excited by a periodic
signal and only harmonic frequency components are pres-
ent, then a harmonic balance simulation will be more
efficient. If, however, several signals are present that are
not harmonically related, then a simulator that can directly
calculate the output given the multifrequency input could
be the most efficient. This is the motivation for using
GPSA. Here, with the input (e.g. voltage) being a sum of
sinusoids having arbitrary frequency relationships, the out-
put (e.g. current) at each frequency is calculated indepen-
dently. The formulas used in this calculation are detailed
below.

In the method of Steer and Khan the output y(¢) of a
system having an N-component multifrequency input

N

()= x() = ¥ 1 Xleos (ant +60) (1)

k=1 k=1
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is described by the generalized power series

y(1) =Al>§0[al{kébkxk(t“"k,l)}l}' (2)

Here y(¢) is the output of the system; / is the order of the
power seriesterms; a, is a complex coefficient; 7, is a
time delay that depends on both power series order and
the index of the input frequency component; and b, is a
real coefficient. Using complex coefficients and time de-
lays enables a broad class of nonlinear circuits and systems
to be described by generalized power series [1}-[4], [6]-[11].
Note that | X, | is the peak magnitude of an input sinusoid
so that a dc input component has w, =0 and ¢, =0 or 7
radians. In phasor notation,

| Xklcos (@i + ¢, —
=X, T e/ +
where X is the phasor of x, and

rk,l =exp(— jwka,l)-

‘°ka,1)

1y *T'*
2 Xy Fk,le

x, (1 - Tk, )=

—Jwgt

Using the multinomial expansion theorem, the power series
of (2) can be expanded and terms collected according to
frequency. As a result, the phasor component of the out-
put, ¥, corresponding to the radian frequency w,, can be
expressed as a sum of intermodulation products (various
powers of X, multiplied together) as given in [1]

00 .
Yq= Z Z Uq (3)
n=0 Ny, Ay
)+ - +nyl=n

where w, =X_ n,w,, a set of n,’s defines an intermod-
ulation product (called an IPD), and # is the order of
intermodulation. The second summation is over all possi-
ble combinations of n,,---, n,y such that |n)|+ -+« + |ny]
= n. The summations are therefore over the infinite num-
ber of intermodulation products (the U,’s) yielding the gth
output component (¥,). When a nonlinear circuit is ex-
cited by a finite number of sinusoids, an infinite number
of frequency components are present. In order to analyze
such a problem numerically, the number of frequency
components considered in the analysis must be truncated.
Here we consider N frequency components. Each inter-
modulation product in (3) is found from

0, -re e L™ |7} @

k=1
where
® ([ (n+20)!
T= 3% iz | dne20Ru20Z (5)
o=0
and
Z Y 1'NI X I‘NI Bl +2s6)
= - n Sk .
S0 Sy =1 Y(|"k|"‘sk)' k=1 *
s+ +sy=0
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In these expressions X is the phasor of x,,

’ X, n,>0
Xi= {Xk* n,<0 (7)
N
Rn+20=exp(—j Z nkwka,n-l-Zu) (8)
k=1
_I1 n=10
‘"“{2 n#0 ©)

and Re{ }, is defined such that for « #0 it is 1gnored
and for w, = 20 the real part of the expresswn in braces is
taken. The formula (3)-(9) essentially turns a time-domain
description (the generalized power series) into a frequency-
domain description (the algebraic formula). GPSA has the
advantage of retaining the time-domain description of the
nonlinearities but requires no explicit time-domain calcula-
tions in order to calculate the frecuency-domain represen-
tation for the output. The formula is considerably simpler
for nonlinear components that can be described by con-
ventional power series [1].

In addition, formulas can be derived for calculating the
derivatives of the output phasors with respect to the input
quantities. Partial derivatives of & nonlinear node current
phasor with respect to the magnitude and phase of a node
voltage phasor are obtained by differentiating the alge-
braic formula (3)-(9). Using the notation in (1)—(9), the
derivative of the phasor of the gth component of the
output of the nonlinearity with respect to the magnitude of
the phasor of the mth input component, X,, =|X,,|e/*, is
found from (3) by differentiating

Y, x iU
=) )} ! (10)
| n=0 ny,ccc Ny a|va|
|+ -+ ayl=n
where
au,  |n,)| N
m X/)l”kl
X, IX, o| L (X
i (n+20)! 93Z 1)
~ n+20 n+2o 2(n+2a) 3|Xm|
and
ZIN [T
91 X,,| PR lf:rlnSk!(lnkl-i_Sk)!
s+ - Fsy=c
2Sm'X ,2s -1
(s (i1 + 5,) E[ el 1)

Similarly, the derivative of the phasor of the gth compo-
nent of the output of the nonlinearity with respect to the
angle of the phasor of the mth component of the input is
found to be

Y,

g
3, N

79, (13)

)
n=0 Ny, ny
e

frif+ - +lnyl=n
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where

au

q .

—= jn U . 14

79, ~ /nle (14)
Calculation of the partial derivatives is, relatively, compu-
tationally inexpensive, as many of the terms are precalcu-
lated in the evaluation of an intermodulation product. The
following section will show how these formulas can be
incorporated in a harmonic-balance-type algorithm to
analyze nonlinear circuits.

IV. GENERALIZED POWER SERIES
AND SPECTRAL BALANCE

The analysis method presented in this paper is based on
minimization of an objective function derived from the
application of Kirchhoff’s current law. The nonlinear ele-
ments are described using generalized power series while
the linear elements are handled using standard frequency-
domain nodal techniques. This results in an efficient anal-
ysis procedure, which is described below. We show how
the objective function is calculated and then present an
efficient method for minimizing the objective function as
well as an algorithm for implementing the analysis tech-
nique on a digital computer.

The analysis of a nonlinear circuit proceeds by dividing
the circuit into linear and nonlinear subcircuits as shown
in Fig. 1. One subcircuit is composed of the linear compo-
nents along with any voltage or current sources, while the
other is composed of nonlinear elements, each of which is
characterized by a generalized power series. The nonlinear
subcircuit has M nodes and at the pth node the instanta-
neous current into the linear subcircuit is the sum of N
frequency components so that

N
i,= ¥ Rel1, eiv]. (15)
g=1
Similarly, the current into the nonlinear subcircuit at the
pth node is

N

- ’ Jw,t

p ) Re[Ip’qe q]
g=1

(16)

where I, , and I, are the phasors of the gth frequency
components of current flowing into the linear and nonlin-
ear subcircuits, respectively. The voltage at the pth node is
N
v,= 2 Re[Vp,qef“q’] (17)
g=1

where ¥,  is the phasor of the gth frequency component
of voltage at the pth node (referred to as a node voltage
phasor). Kirchhoff’s current law must be satisfied, so i, +
ip= 0 for all p from 1 to M. Thus, the steady-state
solution of the circuit can be found by minimizing the

objective function

M N
E=Y Y 1L, ,+ 1) 2
p=1lg=1

(18)

For efficient computation, the objective function E is

LINEAR NONLINEAR

SUBCIRCUIT . SUBCIRCUIT

—
IM 'M

Fig. 1. A nonlinear circuit separated into linear and nonlinear subcir-
cuits. The instantaneous current into the linear subcircuit at the pth
node is ip, while 7, flows into the nonlinear subcircuit. The instanta-
neous voltage at the node is v,.

written as
2 M N 2MN
E=) Y YL E,,(V)=YX GXV) (19)
J=1p=1¢g=1 1=1
where
F,V)=Re(l, +1I/ ) (20)
and

F,,(V)=Im(I, + I ).

(21)
The elements G,(V) are equal to the elements F, , 4 where
the subscript i represents a unique choice for j, p, and 4.
In these expressions, V is the vector of the node voltage
phasors. Evaluation of the objective function as a function
of the node voltage phasors requires calculation of the
node current phasors given the node voltage phasors. For
the linear subcircuit the node current phasors are easily
calculated using standard frequency-domain nodal tech-
niques whereas the current in the nonlinear subcircuit can
be calculated using the algebraic formula (3)—(9) since the
nonlinear elements are described by generalized power
series.

Minimization of the objective function can be achieved
using a variety of iteration schemes. One suitable tech-
nique to minimize such a sum of squares is Newton’s
method. This method seeks to find the minimum of E with
respect to ¥V using the iterative procedure

i+1r Re(V1,1) 1 Re(Vl,l) ]
Im(Vl,l) Im(V1,1)
Re(V, ) Re(V, ) | .
m(v,,) || m(y,, |7
Re(I}M,N) RC(I}M,N)
_Im(VM,N)_ _Im(VM,N)J
(22)

where the leading superscripts are iteration numbers. The
matrix J is the Jacobian where the element in the (2 j — 1)th
row and kth column at the ith iteration is

aG2j—1(ll/)

S e TR

(23)
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and at the (2 j)th row and kth column
96,,('7)

[J(’V)]Zj,k=

Calculation of the Jacobian requires partial derivatives
of the node current phasors with respect to the real and
imaginary parts of the node voltage phasors for all nodes
of the nonlinear subcircuit and frequency components.
These derivatives are readily available for the linear subcir-
cuit, and can be calculated for the nonlinear subcircuit
when the elements are described by generalized power
series. In fact, one of the major advantages of generalized
power series analysis is that the partial derivatives can be
readily and efficiently calculated.

While the derivatives calculated in (10)-(14) are with
respect to polar quantities, they are easily converted to
derivatives with respect to the real and imaginary compo-
nents of the node voltage phasors by using the chain rule
as follows:

JY, oY, X, Y, 99, s
IRe(X,) 9|X,| dRe(X,) d¢, dRe(X,) (25)

and

ay, _ Y, 9d|X,] . Y, a9, . (29)
dIm(X,) d|X,|dIm(X,) d¢, dIm(X,,)

The derivatives for the linear subcircuit are available as
the y parameters of the subcircuit. The derivative of the
current through the linear admittance (Y') with respect to
the real component of the phasor voltage across it is

a.I =
___‘7_={Y m=q (27)
dRe(V,) 10O m#q

while the derivative with respect to the imaginary compo-
nent is

an {JY m=gq

dIm(V,,) Vo m#q’ (28)

The simulation technique just described is implemented
in the program FREDA (FREquency Domain Analysis)
{11], which uses the algorithm outlined in Fig. 2. The
analysis of a nonlinear circuit proceeds as follows. Initially
the circuit and device parameters are input and.the y
parameters of the linear subcircuit are calculated at all
frequencies. Then an initial estimate of the node voltages is
used to calculate the currents in the circuit, along with the
objective function and the necessary derivatives. The initial
estimate of the node voltages need not be very precise and
a zero initial guess is usually adequate. The magnitude of
the objective function calculated from the initial voltage
estimate is checked and if it is sufficiently small, the
voltage estimate is taken as the steady-state solution.
Otherwise, the voltage estimate is updated using the itera-
tion procedure (22). These steps are repeated until the
steady-state solution is found. It should be noted ‘that the
method just developed requires that the nonlinear elements
be described using a series of the form (2), e.g. a gener-
alized power series in one variable. Work is in progress to

333

INPUT CIRCUIT AND
DEVICE PARAMETERS

|

CALCULATE Y-PARAMETERS
OF LINEAR CIRCUIT

ESTIMATE NODE VOLTAG ES‘I

EVALUATE
CURRENTS, DERIVATIVES,
AND OBJECTIVE FUNCTION

15 .
OBJECTIVE FUNCTION YES
SMALL ENOUGH?

UPDATE VOLTAGE ESTIMATE
USING NEWTON'S METHOD

Fig. 2. Algorithm for the generalized power series nonlinear circuit
analysis using a minimization procedure as used in the program
FREDA.

Le Rs
o TIT—VVV
- —
CP C 7 R,
o—
Fig. 3. Equivalent circuit model of a pn junction or Schottky barrier
diode. '

extend these techniques to functions of several variables by
generalizing the algebraic formula of equations (3)-(9).

V. ExaMPLE: LOW-FREQUENCY MIXER ANALYSIS

Mixers couple, via a nonlinear device, a large local
oscillator signal (LO) and an input signal (RF). The signals
mix to produce components at sum and difference fre-
quencies, with one extracted as the desired output signal
and termed the intermediate frequency (IF). As the nonlin-
ear device, mixers commonly use a pn junction or a
Schottky barrier diode, modeled by a nonlinear resistance
in parallel with a nonlinear capacitance (Fig. 3). The
traditional approach to mixer analysis is first to neglect the
RF and solve for the LO waveform at the diode junction.
This is performed in the time domain as the waveform at
the diode is then periodic and its frequency components
can be determined using a fast Fourier transform. Next a
small-signal frequency-domain conversion matrix is devel-
oped to relate the RF, IF, and LO sidebands. In the
terminology used in this paper, this conversion matrix
describes the low-order intermodulation present when the
RF is negligibly small. The conversion matrix concept can
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Fig. 4. Resistive mixer circuit with a general-purpose small-signal Si pn
junction diode, 1N4148. dc bias V; =1 V, peak LO voltage }, =14V,
peak RF voltage ¥, =0.1V, R=1000 Q, R, =7, ;=1 uF. The LO
frequency is 1.1 kHz and the input signal is 1.3 kHz, yielding an
intermediate frequency of 200 Hz, ¢ = I {exp(qv/nkT)—1}, I, =3.16
nA and n=1.895, at 22°C. The ideal series connection of the voltage
generators was achieved using an operational amplifier in the summing
mode. The voltage across the terminals of the diode model, vy, was
measured through a unity-gain buffer amplifier to eliminate parasitic
effects.

be extended to include a large RF by considering that the
extra intermodulation products that result add a dimen-
sion to the conversion matrix. GPSA calculates all signifi-
cant intermodulation products and could be used to
develop this extended, although signal-level-dependent,
conversion matrix. However it is not necessary to develop
the “extended” conversion matrix explicitly as the inter-
modulation products can be used directly to determine
mixer response as is done here.

Large-signal analysis of purely resistive diode mixers has
been based on the Sonine expansion of the ideal Shockley
diode equation [28]. Whereas generalized power series
analysis can be used with arbitrary single-valued junction
characteristics, the analysis based on the Sonine expansion
can only be used with an exponential resistive nonlinearity.
The Sonine expansion and generalized power series meth-
ods can therefore only be compared directly at low fre-
quencies, when the nonlinear capacitance of a diode is
negligible. Using the low-frequency mixer of Fig. 4, we
compare experimental results and simultations based on
the Sonine expansion analysis and GPSA. Low-frequency,
rather than microwave-frequency, experimentation is more
reliable as the mixer can be accurately characterized and
measurement parasitics eliminated.

A. Development of Generalized Power Series

FREDA uses a spectral balance iteration scheme, iterat-
ing between the current—voltage solution of the nonlinear
element and that of the linear circuit to minimize the
Kirchhoff’s current law error. Thus the generalized power
series describing the current—voltage relationship of the
nonlinear element must be developed. This can be derived
from the ideal algebraic relations or from experimental
measurements using a curve fitting procedure so that non-
ideal effects such as high injection and diffusion capaci-
tance effects can be incorporated. It is not necessary to
model the nonlinearity by lumped elements. By way of
example, the generalized power series description is devel-
oped here from the ideal current—voltage and
capacitance-voltage equations that approximately model
the active region of the diode.
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The form of the generalized power series can signifi-
cantly affect computation time. Up to several orders of
magnitude increase in computation speed can be obtained
by developing power series in alternating components only
(that is, the dc value or operating point is not included in
the generalized power series description). This is because
in most circuits and systems dc is the dominant compo-
nent but it does not directly contribute to the intermodula-
tion phenomena. The generalized power series develop-
ment below results in a power series that separates dc and
ac quantities; however, this need not be done explicitly as
it can be performed automatically.

The current-voltage characteristic of an ideal pn
junction or Schottky barrier diode is described by the
Schockley diode equation

ig=1I[exp(av)—1]
and by the capacitance—voltage characteristic

(29)

Cﬁ(—ﬁz—)—v (30)
1__
¢

where i, is the current into the nonlinear resistor, v is the
voltage across the nonlinear resistor and nonlinear capaci-
tor, C, is the nonlinear junction depletion capacitance, and
the other parameters are constants. In the following devel-
opment the direct component of voltage and current has
the subscript k£ =1, and alternating components have k =
2,- -+, N. If the voltage across the diode consists of direct,
V,= v, and alternating, v, =X¥_,v,, terms such that v =
V,+ v, (here and in the following the subscripts d and a
denote direct and alternating quantities, respectively), then
the Taylor series expansion of (29) yields

iR=Isexp(an)< 3 (;"-;u;)}—zs.

/=0

(31)

The expressions describing the nonlinear capacitor can
be similarly developed. Under steady-state conditions, the
average current into the nonlinear capacitor must be zero
since, for a lossless capacitor charge cannot pass between
the plates. Thus it is only necessary to obtain the gener-
alized power series for the alternating components of
current. Integrating both sides of (30) and setting the
depletion layer charge g = 0 when v = ¢ [34], the charge is
given by

Cod”

= — 1y
q Y_l(qb v) (32)
C/0¢y(¢ - Vd)lﬁy 3 { Uq !
= 1-— 33
y—1 /goa/ ‘i"Vd} (33)
where
(1=v)(=v)---(A=y—I+1)
2= 1 1=1,2,---
1 1=0.

(34)
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1f I, and Q, are phasor components, with radian frequency
w,, of current and charge, then I, = jw,Q,. Thus the
current through the capacitor can be expressed in terms of
a generalized power series of voltage

wC ' (¢-V,) " & v\
lC:Jw j0¢ (4) d) Zal{ UV} ] (35)

=0 d

v—1

This is not a conventional power series insofar as w, the
radian frequency of a component of i, is not unique.
Equation (35) also applies to the direct current through C,
as then w =0 and the dc component calculated by (35) 1s
Zero.

The generalized power series expressions for i and i,
can be combined to produce a single generalized power
series for the total current through the diode junction:

m=1

-3 Am{lia,,m{kgzbk,mvko)} |
where |

A, = Lexp(aV,)
/

a
a/,l‘—‘l_!
by1=1
PR A
2 y—1
1=y =v)---(1=vy—=1+1
Q=) Oy ) =12,
2= I
1 I=0
b -1
2Ty Ty

This generalized power series is input to the program
FREDA. Of course it neéed not be so complicated to
develop a generalized power series description of a nonlin-
ear element. The above served to illustrate how a gener-
alized power series can be developed from analytic expres-
sions and in so doing leads to an understanding of the
generalized power series. In this case, use of analytic
expressions will result in a power series that has a limited
range of convergence. In practice, a power series can be
found to accurately model the nonlinearity over a suffi-
ciently wide range of input voltage using numerical meth-
ods.

B. Generalized Power Series Analysis

At each iteration, FREDA uses the algebraic formula,
(3)—(9), to evaluate individual intermodulation products
that are summed to yield an estimate of the response of a
nonlinear system. The iteration scheme described previ-
ously then determines the actual response of the system to
a prescribed accuracy. The third (after formula evaluation
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Fig. 5. Simplified spectrum at the terrainals of the diode in a mixer.

and iteration scheme) major aspect of GPSA is determin-
ing the intermodulation products to calculate.

Each intermodulation product is defined by an inter-
modulation product description (IPD)—a set of n,’s so
that the frequency of an intermodulation product is given
by w=XV_n,w, and n=7Y,|n,|is the order of intermod-
ulation. IPD’s up to a maximum order n_, are prede-
termined and stored in a data base although in the evalua-
tion of the formula, all intermodulation products of the
same order are calculated and added to the total response
for that frequency component until the desired fractional
accuracy is obtained.

Here we use the simplified spectrum (Fig. 5), of the
waveform at the mixer diode to illustrate the concept of
intermodulation products and 1PD’s. Fig. 5 is a simple
spectrum of the waveform at the diode and retains only
those components integral to the operation of a mixer: f,
is the LO; f; is the RF; f, is dc; and f,=f, — f; is the
IF. All of these components appear at the terminals of the
diode junction and so all (e.g. voltage) components are
inputs to the algebraic formula. A partial listing of the
intermodulation products is given in Table I. For example,
Table 1 lists the fourth-order intermodulation product
description f; =2f; — f, + f;, which yields a component at
f1 and contains an intermodulation product of the form
X?2XX,. The evaluation of the algebraic formula (3)—(9)
for all IPD’s is illustrated in Fig. 6. This shows that each
intermodulation product is calculated independently and
summed to give the output at a particular frequency.

The experimental and calculated voltage v, at the termi-
nals of the diode model is given in Fig. 7. Using the
generalized power series analysis, the diode waveform
spectrum, indicated by +’s in Fig. 7(b), was calculated.
The eight frequency components used in the analysis were
chosen to include the components with the most influence
in determining the behavior being examined. With mixers,
the conversion loss is the most important parameter to be
found and so the dc, lower-order LO harmonics, RF, IF,
and low-order sidebands of the LO harmonics must be
included in the analysis. The measured conversion loss
(defined here as the ratio of the IF power delivered by the
diode and the power supplied by the input signal genera-
tor) L =125 dB compares favorably to the calculated
conversion loss L, =11.5 dB.
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Fig. 6. Ilustration of the algebraic formula evaluation.

TABLE1
PARTIAL LISTING OF IPD’S WHEN dc Is NOT AN
INPUT TO THE ALGEBRAIC FORMULA

Output Frequency | n n, n, n,
fl, IF 1 1 0
2 0 1 -1

4 2 -1 1

5 -1 2 -2

7 3 -2 2

8 -2 3 -3

f,, LO 1 0 1 0
2 1 0 1

4 -1 2 -1

5 2 -1 2

7 -2 3 -2

8 3 -2 3

f,, RF 1 0 0 1
2 -1 1 0

4 1 -1 2

5 -2 2 -

7 2 -2 3

g -3 3 -2

f, de 0 0 0 0
3 1 -1 1

6 2 -2 2

As a comparison, the Sonine-expansion-based analysis
was also used to simulate the diode, yielding the spectrum
denoted by circles in Fig. 7(b). It is seen that the two sets
of numerical results are in good agreement with each other
and with the experimental results. The Sonine and power
series analyses used the same set of IPD’s, and in the final
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Fig. 7. Voltage vy at the diode terminals. (a) Experimental waveform.
(b) Spectrum. Solid line—experimental; + —generalized power series °
method; o —Sonine expansion method.

iteration both used 220 IPD’s and up to 12th order inter-
modulation, with the solution calculated to a fractional
accuracy of 0.1 percent. The generalized power series and
Sonine expansion analyses both took 83 iterations and 5.7
s on the Digital Equipment Corporation KL10 computer
to arrive at the solution using the p-factor harmonic bal-
ance scheme of Hicks and Khan [35], but only four itera-
tions and 5.0 s using the objective function minimization
method described here.

V1. CONCLUSIONS

We have presented a novel technique, termed gener-
alized power series analysis, for analyzing nonlinear analog
circuits under large-signal conditions. The technique oper-
ates entirely in the frequency domain, which enables cir-
cuits having multifrequency excitation to be simulated.
The analysis progresses via minimization of an objective
function and, as design specifications can be incorporated
into the objective function, is ideally suited to computer-
aided circuit design. The technique thus addresses many of
the current problems in nonlinear microwave circuit de-

sign.
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