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Abstract —Tfds paper presents for the first time details of the gener-

affxed power series technique for the analysis of analog nonlinear circuits.

The method uses generalized power series descriptions of the nonlinear

elements and a spectraf balance technique to operate entirely in the

frequency domain. It is therefore suited to the analysis of anafog nonlinear

circuits with Iarge-signaf multifrequency excitation of arbitrary frequency

separation. The analysis of a low-frequency mixer is used here as a vehicle

to illustrate the concepts of large-signal freqnency-domrdn analysis and the

generalized power series anafysis tecludque.

I. INTRODUCTION

T HE TREND TOWARD monolithic integration of

microwave circuits is intensifying interest in com-

puter-aided design. The interest is predominantly in the

analysis and design of microwave nonlinear analog circuits

having sinusoidal excitation. The particular problems pre-

sented by these circuits differ significantly from those of

low-frequency and of digital circuits and require new simu-

lation strategies. Currently, research is proceeding in several

areas, including large-signal ,multifrequency excitation (in-

cluding mixer and intermodulation analysis), optimization,

noise analysis, and stability analysis.

This paper details a recently developed numerical non-

linear analysis technique that can be used with analog

circuits having large-signal multifrequency excitation.

Modified power series descriptions (having time delays

and complex coefficients) of the nonlinear elements are

used, so we term the method generalized power series

analysis (GPSA). Earlier uses of generalized power series

analysis are described in [1]–[3]. Applications of gener-

alized power series analysis are reported elsewhere for the

simulation of microwave mixers [4], [5] and of IMPATT

oscillators [6]–[8]. More recently, GPSA has been used to

simulate gain compression and intermodulation distortion

in microwave MESFET amplifiers [9]–[11]. In each appli-

cation, the predictions of generalized power series analysis

have been experimentally verified. In this paper, the method
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of generalized power series analysis is elaborated for the

first time. We present the basic equations dealing with

generalized power series and show how they can be incor-

porated into a harmonic-balance-lype algorithm, including

the efficient calculation of the Jacobian’ matrix. We discuss

the application of the technique to the analysis of a

low-frequency mixer to illustrate the concepts of large-sig-

nal frequency-domain analysis and GPSA.

II. METHODS OF MULTIFREQUENCY

NONLINEAR ANALYSIS

Nonlinear analysis methods can be classified as time-

domain, frequency-domain, or hybrid (mixed time- and

frequency-domain) methods depending on how the linear

and nonlinear elements are analyzed. Time-domain meth-

ods generally use numerical integration or, where possible,

calculate the instantaneous value of the output (e.g. cur-

rent) of an element from the instantaneous value of the

input (e.g. voltage) to it. An example of a computer-aided

analysis technique using this approach is the popular com-

puter program SPICE [12]. Micrc~wave circuits often have

elements that are difficult to model in the time domain

and frequently have time constants that differ by orders of

magnitude. Analysis of these circuits using numerical in-

tegration techniques is inefficient since the integration

time step must be smaller than twice the smallest time

constant while the number of iterations required is de-

termined by the largest time constant [15]. Analysis of

circuits having multifrequency excitation is similarly

troublesome, particularly when the frequencies considered

are widely separated. Time-dorn~ain methods also suffer

from poor dynamic range, which is a problem whenever

signals having large differences in amplitude are present, a

situation common in mixer and amplifier circuits.

A far more useful technique for analyzing microwave

circuits is the harmonic balance method [16]. This method

analyzes the linear elements in the frequency domain and

the nonlinear elements in the time domain and has suc-

cessfully been applied to microwave circuit analysis by a

number of researchers [17]–[21]. With these analyses, the

conversion between the frequency-domain solution of the

linear embedding network and the time-domain solution of

the nonlinearity is usually accomplished using fast Fourier
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transform techniques. This limits these methods to systems

having only harmonically related signal components. Re-

cently, however, several methods have been described which

allow consideration of more general multifrequency excita-

tion. Ushida and Chua [22] have developed a technique

that uses a “generalized” discrete Fourier transform, which

has been improved by Sorkin et al. [23]. Gilmore and

Rosenbaum [24] achieve multifrequency harmonic-balance

simulation by sampling the time-domain signal below the

Nyquist rate. The actual response is found by shifting the

input spectra, repeating the analysis, and appropriately

combining the resulting output spectra. A more straight-

forward approach has been used by Rizzoli et al. [25],

where a large number of harmonics are considered and a

supercomputer used for computation. While these methods

are frequently classified as frequency-domain techniques,

they are more appropriately called hybrid methods since

much of the analysis is explicitly done in the time domain.

Yet another approach to circuit analysis is to treat both

the linear and the nonlinear elements in the frequency

domain. This has particular advantages when the fre-

quency-domain response of a nonlinear analog circuit is

required. Frequency-domain nonlinear analyses use func-

tional expansions of the input–output characteristic of the

nonlinear element. Generally, the function itself is the

summation of basis functions, and the responses due to

each functional component of the expansion are summed

to yield the total response of the system. Perhaps the most

general method is that of Antonov and Ponkratov [26],

who derived a formula for the output of a system de-

scribed by the functional relation y(t) = F(x( t)), where

x(t) is a sum of sinusoids, and F(. ) is a function which

can be expressed as a possibly infinite sum of orthonormal

functions. Their output formula involved multiple infinite

summations of integer order Bessel functions. The result of

using Bessel functions is that convergence of the summa-

tions is likely to be slow and to suffer from poor numerical

accuracy.

Two other frequency-domain nonlinear analysis meth-

ods, using power series and Volterra series, can be viewed

as special cases of the system described by Antonov and

Ponkratov. The simplest functional expansion is the repre-

sentation of -Y(t) as a power series in x(t). Conventional

power series expansions can only be used with frequency-

independent (i.e., resistive) systems having single valued

input–output characteristics (i.e., without hysteresis) [13],
[14]. Other basis function expansions, such as the expan-

sion of the Shockley diode equation in terms of Bessel

functions [27], [28], have been used but these are generally

restricted to systems with particular idealized input–out-

put characteristics.

In 1930 Volterra introduced functional expansions that

could be used with a large class of nonlinear systems. His

work was developed further by Weiner in the 1950’s for

the expansion of functional in terms of orthogonal poly-

nomial series. Weiner’s functional expansions, now known

as Volterra nonlinear transfer functions, while having a

form similar to that of a power series, can handle

frequency-dependent systems with single valued input–

output characteristics [29]. Unfortunately, Volterra nonlin-

ear transfer function analyses are, in general, restricted to

weakly nonlinear systems because of the algebraic com-

plexity of determining Volterra nonlinear transfer func-

tions of high order (as required with more strongly nonlin-

ear systems or with large signals). Because of this, systems

are usually described by fixed, typically third-order,

Volterra series, although no indication of the error in-

volved in doing this is available The limitation arises as, in

essence, Volterra series analysis involves an algebraic pro-

cess analogous to recursion of power series. This is an

unwieldy operation and is exceedingly complex for

Volterra series higher than third order. The great impor-

tance of Volterra series analysis is that it can be systemati-

cally used to analyze fairly complex systems with possibly

noncommensurable frequencies of the input components.

These techniques have been used successfully in analyzing

microwave circuits [30], [31]. An approach related to

Volterra series expansion has been recently reported by

Lamnabhi [32]. This method has the advantage of being

more amenable to computer implementation than the

traditional approaches.

Yet another frequency-domain nonlinear analysis was

introduced by Steer and Khan [1], [4], who used a gener-

alized power series expansion of the input–output char-

acteristics of a nonlinear system. This method is related to

Volterra series analysis [33]; however, the generalized power

series method is not restricted to weakly nonlinear systems,

as is Volterra series analysis. The basic properties of

generalized power series are reviewed in the following

section.

III. BASIC PROPERTIES OF GENERALIZED POWER SERIES

Every nonlinear circuit simulator must have a facility for

calculating the output of a nonlinearity given the input

and a description of the nonlinear element. The method of

calculation selected determines the types of problems that

can be efficiently solved. If a transient response is re-

quired, for example, then a time-domain simulation is

indicated. If instead, the circuit is excited by a periodic

signal and only harmonic frequency components are pres-

ent, then a harmonic balance simulation will be more

efficient. If, however, several signals are present that are
not harmonically related, then a simulator that can directly

calculate the output given the multifrequency input could

be the most efficient. This is the motivation for using

GPSA. Here, with the input (e.g. voltage) being a sum of

sinusoids having arbitrary frequency relationships, the out-

put (e.g. current) at each frequency is calculated indepen-

dently. The formulas used in this calculation are detailed

below.

In the method of Steer and Khan the output y(t) of a

system having an N-component multi frequency input

N N

x(t) = ~ Xk(t) = ~ lxklcos((.d~t++k) (1)
k=l k=l
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is described by the generalized power series In these expressions X~ is the phasor of x~,

[{

N I

}1y(t) ‘A f al ~ b,kxk(t-Tk,l) . (2)
1=0 k=l’

Here y(t) is the output of the system; 1 is the order of the

power seriesterms; a, is a complex coefficient; r~,, is a

time delay that depends on both power series order and

the index of the input frequency component; and bk is a

real coefficient. Using complex coefficients and time de-

lays enables a broad class of nonlinear circuits and systems

to be described by generalized power series [1]-[4], [6]-[11].

Note that ]XAI is the peak magnitude of an input sinusoid

so that a dc input component has ~k = O and @k= O or n

radians. In phasor notation,

~k(t – ~k,l) = Ixklcos(tikt++k – ~,&J)

= ~Xk~k ,eJakt -t ~Xk*~k*le–JWki

where Xk is the phasor of Xk and

‘~,1 = ‘Xp(– .@kTk,/).

Using the multinominal expansion theorem, the power series

of (2) can be expanded and terms collected according to

frequency. As a result, the phasor component of the out-

put, Y~, corresponding to the radian frequency u~, can be

expressed as a sum of intermodulation products (various

powers of X~ multiplied together) as given in [1]

H=() ‘l, ”””, nN
(3)

where ~~ = Z:= In ~ok, a set of n ~’s defines an intermod-

ulation product (called an IPD), and n is the order of

intermodulation. The second summation is over all possi-

ble combinations of nl,. . . . nN such that Inll+ “ 0. + InN]
—— n. The summations are therefore over the infinite num-

ber of intermodulation products (the U~’s) yielding the qth

output component ( Y~). When a nonlinear circuit is ex-

cited by a finite number of sinusoids, an infinite number

of frequency components are present. In order to analyze

such a problem numerically, the number of frequency

components considered in the analysis must be truncated.

Here we consider N frequency components. Each inter-

modulation product in (3) is found from

where

and

(7)

[N \

R n+2a = exp

\
– J ~ ‘1kakTk, n+2.

~

(8)
k=l

(1
en =

n=()

2 n+O
(9)

and Re { }. is defined such that for ti~ # O it is ignored

and for co~=’ O the real part of the expression in braces is

taken. The formula (3)–(9) essentially turns a time-domain

description (the generalized power series) into a frequency-

domain description (the algebraic formula). GPSA has the

advantage of retaining the time-domain description of the

nonlinearities but requires no explicit time-domain calctila-

tions in order to calculate the frecpency-domain represen-

tation for the output. The formula is considerably simpler

for nonlinear components that can be described by con-

ventional power series [1].

In addition, formulas can be derived for calculating the

derivatives of the output phasors with respect to the input

quantities. Partial derivatives of al nonlinear node current

phasor with respect to the magnitude and phase of a node

voltage phasor are obtained by differentiating the alge-

braic formula (3)-(9). Using the notation in (l)-(9), the

derivative of the phasor of the qth component of the

output of the nonlinearity with respect to the magnitude of

the phasor of the m th input component, XM = IX~le-@m, is

found from (3) by differentiating

I?zll+ . + l)2Nl=n

where

–=uuq+A’Li(x’)’nk’)aUq

alxml IXmI

(
“ ~~oa.+2.R.+2.

(n+2u)! az

)
— (11)

2(~+,0) dlx~l

and

az
xalxml= ~,,,,.,~N

/{(
fi – ‘Xk”skk=~sk!(lnkl+sk)! )

S,+. ..+ SN=O

“(2smlXm12sm-1

Sm!(pzml+sm)!
)(_j1bj+2Sj. ,12,

Similarly, the derivative of the phasor of the qth compo-

nent of the output of the nonlinearity with respect to the

angle of the phasor of the m th component of the input is

Ixkiz”
z= S,,.?,SN{(k!i sk!(lnkl+sk)! lfilb’nk’+2sk))}” ‘oundtobe ~= : x #

$,+. ..+ SN=O
aqm ~=1)

‘13’ ””3n N
m

(6) lnll+-~l = .

(13)
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where

(14)

Calculation of the partial derivatives is, relatively, compu-

tationally inexpensive, as many of the terms are precalcu-

lated in the evaluation of an intermodulation product. The

following section will show how these formulas can be

incorporated in a harmonic-balance-type algorithm to

analyze nonlinear circuits.

IV. GENERALIZED POWER SERIES

AND SPECTRAL BALANCE

The analysis method presented in this paper is based on

minimization of an objective function derived from the

application of Kirchhoff’s current law. The nonlinear ele-

ments are described using generalized power series while

the linear elements are handled using standard frequency-

domain nodal techniques. This results in an efficient anal-

ysis procedure, which is described below. We show how

the objective function is calculated and then present an

efficient method for minimizing the objective function as

well as an algorithm for implementing the analysis tech-

nique on a digital computer.

The analysis of a nonlinear circuit proceeds by dividing

the circuit into linear and nonlinear subcircuits as shown

in Fig. 1. One subcircuit is composed of the linear compo-

nents along with any voltage or current sources, while the

other is composed of nonlinear elements, each of which is

characterized by a generalized power series. The nonlinear

subcircuit has 11 nodes and at the pth node the instanta-

neous current into the linear subcircuit is the sum of N

frequency components so that

N

1ip = x Re [lP,~e@~t . (15)
~=1

Similarly, the current into the nonlinear subcircuit at the

p’th node is

(16)

where 1P,~ and lP’,~ are the phasors of the q th frequency

components of current flowing into the linear and nonlin-

ear subcircuits, respectively. The voltage at the p th node is

where VP,~ is the phasor of the q th frequency component

of voltage at the pth node (referred to as a node voltage

phasor). Kirchhoff’s current law must be satisfied, so ip +

i; = O for all p from 1 to M. Thus, the steady-state

solution of the circuit can be found by minimizing the

objective function

(18)
~=1 ~=1

For efficient computation, the objective function E is

II li+- v,+

LINEAR NONLINEAR

-v2-
IZ . 1>

SUBCIRCUIT ●

. SUBCIRCUIT

& vu+
lM l’M

Fig. 1. A nonlinear circuit separated into linear and nonlinear subcir-
cuits. The instantaneous current into the linear subcircuit at the p th
node is iP, while Z; flows into the nonlinear subcircuit. The instanta-
neous voltage at the node is up.

writ ten as

E= ~ f f ~:p, q(V) = 2fG:(V) (19)
~=lp=lq=l ,=1

where

F,,p,q(~) =Re(~P,, +~;.,) (20)

and

~2,p,q(~)=Im(~p,q+~;, q). (21)

The elements G,(V) are equal to the elements ~.,P, ~, where

the subscript i represents a unique choice for j, p, and q.

In these expressions, V is the vector of the node voltage

phasors. Evaluation of the objective function as a function

of the node voltage phasors requires calculation of the

node current phasors given the node voltage phasors. For

the linear subcircuit the node current phasors are easily

calculated using standard frequency-domain nodal tech-

niques whereas the current in the nonlinear subcircuit can

be calculated using the algebraic formula (3)–(9) since the

nonlinear elements are described by generalized power

series.

Minimization of the objective function can be achieved

using a variety of iteration schemes. One suitable tech-

nique to minimize such a sum of squares is Newton’s

method. This method seeks to find the minimum of E with

respect to V using the iterative procedure

i+;

lm(V1,l)

ML,q)

h-w,q)

Re(VM, N)

_lm(vM, N)

1

—

Re(V1,l)

Im(Vl,l)

Re(%)

w%)

Re(VM, N)

lm(vM, N)

- J-l(iV)G(’V)

(22)

where the leading superscripts are iteration numbers. The

matrix J is the Jacobian where the element in the (2 j – l)th

row and k th column at the i th iteration is

aG,,-l(’v)
[J(’17)]zj-1,~= aRe(lvk) (23)
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and at the (2 j)th row and k th column

[24)

Calculation of the Jacobian requires partial derivatives

of the node current phasors with respect to the real and

imaginary parts of the node voltage phasors for all nodes

of the nonlinear subcircuit and frequency components.

These derivatives are readily available for the linear subcir-

cuit, and can be calculated for the nonlinear subcircuit

when the elements are described by generalized power

series. In fact, one of the major advantages of generalized

power series analysis is that the partial derivatives can be

readily and efficiently calculated.

While the derivatives calculated in (10)-(14) are with

respect to polar quantities, they are easily converted to

derivatives with respect to the real and imaginary compo-

nents of the node voltage phasors by using the chain rule

as follows:

and

The derivatives for the linear subcircuit are available as

the } parameters of the subcircuit. The derivative of the

current through the linear admittance (Y) with respect to

the real component of the phasor voltage across it is

aIq

{

Y ~=q

i7Re(Vm) = 0 W#+q
(27)

while the derivative with respect to the imaginary compo-

nent is

aIq

{

_ jY ~=q

dIm(Vm) – 0
(28)

m+q”

The simulation technique just described is implemented

in the program FREDA (FREquency Domain Analysis)

[11], which uses the algorithm outlined in Fig. 2., The

analysis of a nonlinear circuit proceeds as follows. Initially

the circuit and device parameters are input and~ the y

parameters of the linear subcircuit are calculated at all

frequencies. Then an initial estimate of the node voltages is

used to calculate the currents in the circuit, along with the

objective function and the necessary derivatives. The initial

estimate of the node voltages need not be very precise and

a zero initial guess is usually adequate. The magnitude of

the objective function calculated from the initial voltage
estimate is checked and if it is sufficiently small, the

voltage estimate is taken as the steady-state solution.

Otherwise, the voltage estimate is updated using the itera-

tion procedure (22). These steps are repeated until the

steady-state solution is found. It should be noted that the

method just developed requires that the nonlinear elements

be described using a series of the form (2), e.g. a gener-

alized power series in one variable. Work is in progress to.:.

I_!
-IESTIMATE NODE VOLlrAGES

i_&sf5Hd

“E-~-.xOBJECTIVE FUNCTION

NO

3

UPDATE VOLTAGE ESTIMATE
USING NEWTONS METHOD

Fig. 2. Algorithm for the generalized power series nonlinear circuit

analysis using a minimization proceckxe as used in the program
FREDA.

Lp Rs

-r----r-i+
‘JT

Cp CJw
Fig. 3. Equivalent circuit model of a pn junction or Schottky barrier

diode.

extend these techniques to functions of several variables by

generalizing the algebraic formulla of equations (3)-(9].

V. EXAMPLE: LOW-FREQUENCY MIXER ANALYSIS

Mixers couple, via a nonlinear device, a large local

oscillator signal (LO) and an input signal (RF). The signals

mix to produce components at sum and difference fre-

quencies, with one extracted as the desired output signal

and termed the intermediate freqpency (IF). As the nonlin-

ear device, mixers commonly use a pn, junction or a

Schottky barrier diode, modeled by a nonlinear resistance

in parallel with a nonlinear capacitance (Fig. 3). The

traditional approach to mixer analysis is first to neglect the

RF and solve for the LO waveform at the diode junction.

This is performed in the time domain as the waveform at

the diode is then periodic and its frequency components

can be determined using a fast Fourier transform. Next a

small-signal frequency-domain conversion matrix is devel-

oped to relate the RF, IF, and LO sidebands. In the

terminology used in this paper, this conversion matrix

describes the low-order intermodulation present when the

RF is negligibly small. The conversion matrix concept can
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K I

Rs

“L—__———
DIODE

Fig. 4. Resistive mixer circuit with a general-purpose small-signal Si pn

junction diode, 1N4148. dc bias Vd = 1 V, peak LO voltage L = 1.4 V.

peak RF voltage ~ = 0.1 V, R =1000 Q, R,= 7 Q, ~ =1 yF. The LO

frequency is 1.1 kHz and the input signal is 1.3 kHz, yielding an
intermediate frequency of 200 Hz, t = 1, {exp ( qv/q kT) – 1}, 1, = 3.16
nA and q = 1.895, at 22”C. The ideal series connection of the voltage
generators was achieved using an operational amplifier in the summing
mode. The voltage across the terminals of the diode model, Vr, was
measured through a unity-gain buffer amplifier to eliminate parasitic

effects.

be extended to include a large RF by considering that the

extra intermodulation products that result add a dimen-

sion to the conversion matrix. GPSA calculates all signifi-

cant intermodulation products and could be used to

develop this extended, although signal-level-dependent,

conversion matrix. However it is not necessary to develop

the “extended” conversion matrix explicitly as the inter-

modulation products can be used directly to determine

mixer response as is done here.

Large-signal analysis of purely resistive diode mixers has

been based on the Sonine expansion of the ideal Shockley

diode equation [28]. Whereas generalized power series

analysis can be used with arbitrary single-valued junction

characteristics, the analysis based on the Sonine expansion

can only be used with an exponential resistive nonlinearity.

The Sonine expansion and generalized power series meth-

ods can therefore only be compared directly at low fre-

quencies, when the nonlinear capacitance of a diode is

negligible. Using the low-frequency mixer of Fig. 4, we

compare experimental results and simulations based on

the Sonine expansion analysis and GPSA. Low-frequency,

rather than microwave-frequency, experimentation is more

reliable as the mixer can be accurately characterized and

measurement parasitic eliminated.

A. Development of Generalized Power Series

FREDA uses a spectral balance iteration scheme, iterat-

ing between the current–voltage solution of the nonlinear
element and that of the linear circuit to minimize the

Kirchhoff’s current law error. Thus the generalized power

series describing the current–voltage relationship of the

nonlinear element must be developed. This can be derived

from the ideal algebraic relations or from experimental

measurements using a curve fitting procedure so that non-

ideal effects such as high injection and diffusion capaci-

tance effects can be incorporated. It is not necessary to

model the nonlinearity by lumped elements. By way of

example, the generalized power series description is devel-

oped here from the ideal current–voltage and

capacitance–voltage equations that approximately model

the active region of the diode.

The form of the generalized power series can signifi-

cantly affect computation time. Up to several orders of

magnitude increase in computation speed can be obtained

by developing power series in alternating components only

(that is, the dc value or operating point is not included in

the generalized power series description). This is because

in most circuits and systems dc is the dominant compo-

nent but it does not directly contribute to the intermodula-

tion phenomena. The generalized power series develop-

ment below results in a power series that separates dc and

ac quantities; however, this need not be done explicitly as

it can be performed automatically.

The current–voltage characteristic of an ideal pn

junction or Schottky barrier diode is described by the

Schockley diode equation

i~=l, [exp(ao)–1] (29)

and by the capacitance–voltage characteristic

c
q= ‘0 ,

()1–;

(30)

where iR is the current into the nonlinear resistor, u is the

voltage across the nonlinear resistor and nonlinear capaci-

tor, C~ is the nonlinear junction depletion capacitance, and

the other parameters are constants. In the following devel-

opment the direct component of voltage and current has

the subscript k =1, and alternating components have k =

2,. . . , N. If the voltage across the diode consists of direct,

V~ = VI, and alternating, Ua= X1= ~vk, terms such that u =
Vd + u. (here and in the following the subscripts d and a

denote direct and alternating quantities, respectively), then

the Taylor series expansion of (29) yields

The expressions describing the nonlinear capacitor can

be similarly developed. Under steady-state conditions, the

average current into the nonlinear capacitor must be zero

since, for a lossless capacitor charge cannot pass between

the plates. Thus it is only necessary to obtain the gener-

alized power series for the alternating components of

current. Integrating both sides of (30) and setting the

depletion layer charge q = O when u = @ [34], the charge is
given by

C,O+Y

q= -#-u) ’-’ (32)

<.+’(O – vd)l-’ m.
y–1 ?+7%}’’33)

where

[

(1-y) (-y)... (y-1+1)l)
al= /!

1=1,2,...

\l 1=0.

(34)
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If Ik and Q~ are phasor components, with radian frequency

ak, of current and charge, then ~k = jukQk. Thus the

current through the capacitor can be expressed in terms of

a generalized power series of voltage

This is not a conventional power series insofar as U, the

radian frequency of a component of i, is not unique.

Equation (35) also applies to the direct current through ~,

as then o = O and the dc component calculated by (35) is

zero.

The generalized power series expressions for ic and iR

can be combined to produce a single generalized power

series for the total current through the diode junction:

m=l ~l=o

where

Al= l$exp (aVd)

cl’
al,l = ~

blk.1 =

A2=
jtiCJo@’(@-V~)l-’

y–1

(
(1-y) (-y)... (y-1+1)l)

a[,2 = 1!
1=1,2,”””

1 1=0

–1
b ——

k,’–G_v~”

This generalized power series is input to the program

FREDA. Of course it need not be so complicated to

develop a generalized power series description of a nonlin-

ear element. The above served to illustrate how a gener-

alized power series can be developed from analytic expres-

sions and in so doing leads to an understanding of the

generalized power series. In this case, use of analytic

expressions will result in a power series that has a limited

range of convergence. In practice, a power series can be

found to accurately model the nonlinearity over a suffi-

ciently wide range of input voltage using numerical meth-

ods.

B. Generalized Power Series Analysis

At each iteration, FREDA uses the algebraic formula,

(3)-(9), to evaluate individual intermodulation products

that aie summed to yield an estimate of the response of a

nonlinear system. The iteration scheme described previ-

ously then determines the actual response of the system to

a prescribed accuracy. The third (after formula evaluation

385-

j f, f3
f2

DC IF RF Lo

FREQUENCY

Fig. 5. Simplified spectrum at the terminals of the diode in a mixer.

and iteration scheme) major aspect of GPSA is determin-

ing the intermodulation products to calculate.

Each intermodulation product is defined by an inter-

modulation product description (IPD)—a set of n k’s so

that the frequency of an intermc)dulation product is given

by u = x;= In kcok and n = Zkln kl is the order of intermod-

ulation. IPD’s up to a maximum order n ~= are prede-

termined and stored in a data base although in the evalua-

tion of the formula, all intermodulation products of the

same order are calculated and added to the total response

for that frequency component until the desired fractional

accuracy is obtained.

Here we use the simplified spectrum (Fig. 5), of the

waveform at the mixer diode tc~ illustrate the concept of

intermodulation products and 1PD’s. Fig. 5 is a simple

spectrum of the waveform at the diode and retains only

those components integral to the qperation of a mixer: f2
is the LO; f3 is the RF; f~ is dc; and fl = f2 – f3 is the

IF. All of these components appear at the terminals of the

diode junction and so all (e.g. voltage) components are

inputs to the algebraic formula. A partial listing of the

intermodulation products is given in Table I. For example,

Table I lists the fourth-order intermodulation product

description fl = 2 fl – f2 + f3, which yields a component at

f, and contains an intermodulation product of the form

X/X~Xa. The evaluation of the algebraic formula (3)-(9)

for all IPD’s is illustrated in Fig. 6. This shows that each

intermodulation product is calculated independently and

summed to give the output at a particular frequency.

The experimental and calculated voltage UT at the termi-

nals of the diode model is given in Fig. 7. Using the

generalized power series analysis, the diode waveform

spectrum, indicated by +‘s in Fig. 7(b), was calculated.

The eight frequency components used in the analysis were

chosen to include the components with the most influence

in determining the behavior being examined. With mixers,

the conversion loss is the most important parameter to be

found and so the dc, lower-order LO harmonics, RF, IF,

and low-order sidebands of the LO harmonics must be

included in the analysis. The measured conversion loss

(defined here as the ratio of the IF power delivered by the

diode and the power supplied by the input signal genera-

tor) L, =12.5 dB compares favorably to the calculated

conversion loss LC = 11.5 dB.
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Fig. 6. Illustration of the algebraic formula evaluation.

TABLE I

PARTIAL LISTING OF IPDs WHEN dc Is NOT AN

INPUT TO THE ALGEBRAIC FORMULA

>

Output Frequency

f,, IF

fz, LO

L fl, dc

n
% % n3

1100

2 0 1 -1
42-11
5 -1 2 -2
7 3 -2 2
8 -2 3 -3

1010

2101
4 -1 2 -1

5 2 -1 2
7 -2 3 -2
8 3 -2 3

1001

2 -110
41-12
5 -2 -1
72 -; 3
8 -3 3 -2

0000
3 1 -1 1
6 2 -2 2

As a comparison, the Sonine-expansion-based aimlysis

was also used to simulate the diode: yielding the spect&m

denoted by circles in Fig. 7(b). It is seen that the two sets

of numerical results are in good agreement with each other

and with the experimental results. The Sonine and power

series analyses used the same set of IPD’s, and in the final

1 1 r 4 1 1

6246
TIME (mS)

(a)

60f ‘1-’

6 io

, ,11
4

FREQUENCY(kHz)

@)

Fig. 7. Voltage VT at the diode terminals. (a) Experimental waveform.
(b) Spectrum. Solid line-experimental; + —generalized power series “

method; o — Sonine expansion method.

iteration both used 220 IPDs and up to 12th order inter-

modulation, with the solution calculated to a fractional

accuracy of 0.1 percent. The generalized power series and

Sonine expansion analyses both took 83 iterations and 5.7

s on the Digital Equipment Corporation KL1O computer

to arrive at the solution using the p-factor harmonic bal-

ance scheme of Hicks and Khan [35], but only four itera-

tions and 5.0 s using the objective function minimization

method described here.

VI. CONCLUSIONS

We have presented a novel technique, termed .gener-. .
alized power series analysis, for analyzing nonlinear analog

circuits under large-signal conditions. The technique oper-

ates entirely in the frequency domain, which enables cir-

cuits having multifrequency excitation to be simulated.

The analysis progresses via minimization of an objective

function and, as design specifications can be incorporated

into the objective function, is ideally suited to computer-

aided &cuit design. The technique thus addresses many of

the current problems in nonlinear microwave circuit de-

sign.
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